How not to generate
random numbers

Nadia Heninger

University of Pennsylvania

June 5, 2015

BLOCKCHAIN

Android Wallet Security Update

Alyson - May 28, 2015 - 2 Replies

Today, we released a new version of our Android wallet in response to a recent security
disclosure. In rare circumstances, certain versions of Android operating system could fail
to provide sufficient entropy, and when backup provisions also failed, multiple users
could end up generating duplicate addresses. To our knowledge, this bug resulted in one
specific address being generated multiple times, leading to a loss of funds for a handful of
users.

BLOCKCHAIN

Android Wallet Security Update

Alyson - May 28, 2015 - 2 Replies

Today, we released a new version of our Android wallet in response to a recent security
disclosure. In rare circumstances, certain versions of Android operating system could fail
to provide sufficient entropy, and when backup provisions also failed, multiple users
could end up generating duplicate addresses. To our knowledge, this bug resulted in one
specific address being generated multiple times, leading to a loss of funds for a handful of
users.

/u/murbul:

And the final mistake: They were using HTTP instead of HTTPS to make the webservice call to random.org. On Jan 4,
random.org started enforcing HTTPS and returning a 301 Permanently Moved error for HTTP - see
https://www.random.org/news/. So since that date, the entropy has actually been the error message (turned into
bytes) instead of the expected 256-bit number. Using that seed, SecureRandom will generate the private key for
address 1Bn9ReEocMG1WEW1qYjuDrdFzEFFDCq43F 100% of the time. Ouch. This is around the time that address
first appears, so the timeline matches.

Motivating question:

What does cryptography look like on a broad scale?

Methodology:

1. Collect cryptographic data (keys, signatures...)

2. Look for interesting things.

Mining your Ps and Qs: Widespread Weak Keys in Network Devices
Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex
Halderman Usenix Security 2012 https://factorable.net

“Ron was wrong, Whit is right” published as

Public Keys Arjen K. Lenstra, James P. Hughes, Maxime Augier,
Joppe W. Bos, Thorsten Kleinjung, and Christophe Wachter Crypto
2012

Elliptic Curve Cryptography in Practice Joppe W. Bos, J. Alex
Halderman, Nadia Heninger, Jonathan Moore, Michael Naehrig,
and Eric Wustrow. Financial Cryptography 2014

Factoring RSA keys from certified smart cards: Coppersmith in the wild
Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou,
Nadia Heninger, Tanja Lange, and Nicko van Someren, Asiacrypt
2013.

Data Collection

Collecting HTTPS data

(Heninger, Durumeric, Wustrow, Halderman 2012)
(Durumeric, Wustrow, Halderman 2013)

SSlat

%'j‘:,’

O [|zmap

Dbservatory, e

Methodology:
* Scan entire IPv4 space on port 443.
* Download HTTPS certificates from live hosts.

Open port Handshake RSA DSA ECDSA GOST

28,900,000 12,800,000 5,600,000 6,000 8 200

Scanning tools available at zmap. io, data at scans. io.

zmap.io
scans.io

SSH

(Heninger, Durumeric, Wustrow, Halderman 2012)
(Bos, Halderman, Heninger, Moore, Naehrig, Wustrow 2013)

Methodology:
* Scan entire IPv4 space on port 22.

+ Download host public keys, signatures, Diffie-Hellman
key exchange.

Open port Handshake RSA DSA ECDSA GOST
23,000,000 12,000,000 10,900,000 9,900,000 1,200,000 114

PGP

(Lenstra, Hughes, Augier, Bos, Kleinjung, Wachter 2012)
HOW To USE PGP To VERIFY

THAT AN EMAIL 19 AUTHENTIC:
LOOK FOR THS
TEXT AT THE ToP

L= = Lnr._J

PGP keys are used to sy =~ ‘*I_&TY_I

* sign and encrypt email
messages. HASH: SHAZ56
HeY,

Lo aol TRAMKE CHD Teies o SaDE Oc

IF IT5 THERE, THE EMAIL 15 PROBABLY FINE.

XKCD

Methodology:
* Download PGP key repository dump containing public

keys, signatures.

RSA keys DSAkeys ElGamal keys
700,000 2,100,000 2,100,000

Bitcoin

(Bos, Halderman, Heninger, Moore, Naehrig, Wustrow 2013)

Bitcoin uses ECDSA.

Addresses are public keys, transactions
contain signatures.

Block chain is transferred to bitcoin clients.
Can also be downloaded in bulk.

keys transactions

August 2013:
15,291,112 22,159,078

Taiwan Citizen Digital Certificate Smartcards

(Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren 2013)

Taiwan's smart card IDs allow citizens to
+ file income taxes,
* update car registrations,
* transact with government agencies,

* interact with companies (e.g.
Chunghwa Telecom) online.

March 2012: Collected 3,002,000 certificates (all using RSA
keys) from national LDAP directory.

2.3 million distinct 1024-bit RSA moduli, 700,000 2048-bit.

Cryptography relies on good randomness.

If you use bad randomness, an attacker might
be able to guess your private key.

End of story?

Are repeated public exponents a problem?

RSA Public Keys

N = pg modulus

e encryption
exponent

TLS e values
65537 5,689,766
17 39,637
3 19,629
35 6,272
5 418
7 201
47 94
11 80
59 77
65535 44
37 13
44611 13
13 8
65543 7
2147483647 7
65539 6
257 5

Pl aY

Are repeated public moduli a problem?

Public Key Private Key
N = pg modulus p,qg primes
e encryption d decryption exponent
exponent (d=e""mod(p—1)(g—1))

+ Two hosts share N: — both know private key of the
other. Factorization is unique.

Hosts share the same public and private keys, and can
decrypt and sign for each other.

What happens if we look for repeated moduli?

> 60% of HTTPS and SSH hosts served non-unique
public keys.

What happens if we look for repeated moduli?

> 60% of HTTPS and SSH hosts served non-unique
public keys.

Many valid (and common) reasons to share keys:

+ Shared hosting situations. Virtual hosting.

* A single organization registers many domain names
with the same key.

* Expired certificates that are renewed with the same key.

What happens if we look for repeated moduli?

> 60% of HTTPS and SSH hosts served non-unique
public keys.
Common (and unwise) reasons to share keys:

+ Device default certificates/keys.
+ Apparent entropy problems in key generation.

What happens if we look for repeated moduli?

> 60% of HTTPS and SSH hosts served non-unique
public keys.
Common (and unwise) reasons to share keys:

+ Device default certificates/keys.
+ Apparent entropy problems in key generation.

HTTPS: SSH:
default certificates/keys: default or low-entropy keys:
670,000 hosts (5%) 1,000,000 hosts (10%)

low-entropy repeated keys:
40,000 hosts (0.3%)

Subjects of most repeated TLS Certificates

C=TwW,
C=UA,
C=Us,
C=CA,
C=Us,

ST=HsinChu, L=HuKou, 0=DrayTek Corp., 0OU=DrayTek Support, CN=Vigor Rou
ST=Califonia, L=Irvine, 0=Broadcom, 0OU=Broadband, CN=Daniel/emailAddre
ST=AL, L=Huntsville, 0=ADTRAN, Inc., CN=NetVanta/emailAddress=tech.sup
ST=Quebec, L=Gatineau, O=Axentraserver Default Certificate 863B4AB, CN
ST=California, L=Santa Clara, O=NETGEAR Inc., OU=Netgear Prosafe, CN=N
ST=SomeState, L=SomeCity, 0=SomeOrganization, 0U=SomeOrganizationalUni
ST=Texas, L=Round Rock, 0=Dell Inc., OU=Remote Access Group, CN=iDRACE
ST=SomeState, L=SomeCity, O=SomeOrganization, 0U=SomeOrganizationalUni
ST=WA, L=WA, O=lxlabs, 0U=web, CN=*.lxlabs.com/emailAddress=sslsign@lx
ST=none, L=Taipei, 0=NetKlass Techonoloy Inc, 0U=NetKlass, CN=localhos
ST=SomeState, L=SomeCity, O=SomeOrganization, 0U=SomeOrganizationalUni
CN=0ORname_Jungo: OpenRG Products Group

ST=SomeState, L=SomeCity, 0=SomeOrganization, OU=SomeOrganizationalUni
L=Kaunas, 0=Ubiquiti Networks Inc., OU=devint, CN=ubnt/emailAddress=su
ST=Some-State, 0=Mini Webservice Ltd

ST=Texas, L=Round Rock, 0=Dell Inc., OU=Remote Access Group, CN=DRACH
ST=Some-State, O=Internet Widgits Pty Ltd, CN=TS Series NAS

ST=NRW, L=Wuerselen, 0=LANCOM Systems, OU=Engineering, CN=www.lancom s

x509 Subject Alt Name of Repeated Trusted TLS

Certificates

DNS:*.opentransfer.com, DNS:opentransfer.com

DNS:*.home.pl, DNS:home.pl

DNS:a248.e.akamai.net, DNS:*.akamaihd.net, DNS:*.akamaihd-staging.net
DNS:*.cll.hesecure.com, DNS:cll.hesecure.com

DNS:*.pair.com, DNS:pair.com

DNS:*.cl12.hesecure.com, DNS:cl12.hesecure.com
DNS:*.c10.hostexcellence.com, DNS:c10.hostexcellence.com
DNS:*.securesitehosting.net, DNS:securesitehosting.net
DNS:*.sslcert19.com, DNS:sslcertl19.com

DNS:*.cll.ixsecure.com, DNS:cll.ixsecure.com
DNS:*.c9.hostexcellence.com, DNS:c9.hostexcellence.com
DNS:*.naviservers.net, DNS:naviservers.net
DNS:*.c10.ixwebhosting.com, DNS:c10.ixwebhosting.com
DNS:*.google.com, DNS:google.com, DNS:*.atggl.com, DNS:*.youtube.com, DNS:yo
DNS:*.hospedagem.terra.com.br

DNS:*.c8.ixwebhosting.com, DNS:c8.ixwebhosting.com

DNS:

www.control.tierra.net, DNS:control.tierra.net

Classifying repeated SSH host keys

M Devices
[Hosting providers
[] Unknown/other

10°

Number of repeats

10*

50 most repeated RSA SSH keys

Debian OpenSSL Weak Keys
31,111 (0.34%) of RSA SSH hosts

Percentage of Certificates using Debian Weak Keys =
0.06 [™,
0.05 |
0.04 | e,
M P e
0.03 | ——
Browser Trusted Certificates with Debian Weak Keys -
140
130 |
120 -
110 [
100 [
9% | Rl
0)/) 0@/) 1)/} 0,// 0@/) 0%
=] < s @ @
Scan Date

Durumeric Wustrow Halderman 2013

[™ ssL Error

€ € (xheps//198.31.50.123

‘ @ www.snakeoil.dom

WwWw,

Time

¥ Details

Subject Name
Country
State/Province
Locality
Organization
Organizational Unit
Common Name
Email Address

Issuer Name
Country
State/Province
Locality
Organization
Organizational Unit
Common Name
Email Address

lL.dom

Issued by: Snake il CA
Expired: Friday, January 4, 2008 2:56:28 PM Eastern Standard

@ This certificate has expired

XY

Snake Desert

Snake Town

Snake Oil, Ltd
Webserver Team
www.snakeoil.dom
wiwwi@snakeoil.dom

Xy

Snake Desert

Snake Town

Snake Oil, Ltd
Certificate Authority
Snake Oil CA

ca@snakeoil.dom

[Test Page for the SSL/TLS-2

€ C' [https://198.31.50.123 =

Hey, it worked !
The SSL/TLS-aware Apache webserver was
successfully installed on this website.

If you can see this page, then the people who own this website have just installed the Apache Web server
software and the Apache Interface to OpenSSL (mod ss!) successfully. They now have to add content to this
directory and replace this placeholder page, or else point the server at their real content.

ATTENTION!

If you are seeing this page instead of the site you expected, please contact the administrator of the
site involved. (Try sending mail t0 <webmaster@domain>.) Although this site is running the
Apache software it almost certainly has no other connection to the Apache Group, so please do not
send mail about this site or its contents to the Apache authors. If you do, your message will be
ignored.

The Apache online documentation has been included with this distribution.
Especially also read the mod_ssl User Manual carefully.

Your are allowed to use the images below on your SSL-aware Apache Web server.
Thanks for using Apache, mod_ssl and OpenSSL!

AR g\r

What could go wrong: Shared factors

If two RSA moduli share a common factor,

N1 = pgn N> = pq>

What could go wrong: Shared factors

If two RSA moduli share a common factor,

N1 = pgn N> = pq>

ng(N1 5 NZ) =p

You can factor both keys with GCD algorithm.

Time to factor Time to calculate GCD
768-bit RSA modulus: for 1024-bit RSA moduli:
2.5 calendar years 15us

[Kleinjung et al. 2010]

Do we actually expect to find key collisions in the
wild?

Experiment: Compute GCD of each pair M moduli
randomly chosen from P primes.

What should happen? Nothing.

Do we actually expect to find key collisions in the
wild?

Experiment: Compute GCD of each pair M moduli
randomly chosen from P primes.

What should happen? Nothing.

Prime Number Theorem: Birthday bound:
~ 10"°0 512-bit primes Pr[nontrivial gcd] ~ 1—e—2M*/P
= Earth’s population #atoms in Earth #atoms in universe
& 1 - T T T T |]
: [
2
§ 0o 1 1 1 L
= 1 1020 1040 1060 1080 10100

#moduli M

Naively computing pairwise GCDs
Euclid's algorithm gcd(a, b)
if b=0:
return a

else:
return gcd(b,a mod b)

a, b have n bits — O(n?) time.

Naively computing pairwise GCDs
Euclid's algorithm gcd(a, b)
if b=0:
re a

els
gcd(b,a mod b)

a, b Hfve n bits — O(n?) time.

Naively computing pairwise GCDs
Euclid's algorithm gcd(a, b)

if b=0: Use fast integer arithmetic
re a for O(n(Ign)?Iglgn) time.
els “Fast multiplication and its

gcd(b, a mod b) applications” Bernstein 2008

a, b Hfve n bits — O(n?) time.

Naively computing pairwise GCDs
Euclid's algorithm gcd(a, b)

if b=0: Use fast integer arithmetic
re a for O(n(Ign)?Iglgn) time.
els “Fast multiplication and its

gcd(b,a mod b) applications” Bernstein 2008
a, b Hfve n bits — O(n?) time.
Naive pairwise GCDs:
for all pairs (N;, N;):

if gcd(N;, N)) # 1.
add (N;, N)) to list

Naively computing pairwise GCDs
Euclid's algorithm gcd(a, b)

if b=0: Use fast integer arithmetic
re a for O(n(Ign)?Iglgn) time.
els “Fast multiplication and its

gcd(b, a mod b) applications” Bernstein 2008
a, b Hfve n bits — O(n?) time.

Naive pairwise GCDs:

14 x 108\
15us x pairs
for all pairs (N;, N)): 2
if gcd(N;, N)) # 1. ~ 1100 years

add (N;, N)) to list

Naively computing pairwise GCDs
Euclid's algorithm gcd(a, b)

if b=0: Use fast integer arithmetic
re a for O(n(Ign)?Iglgn) time.
els “Fast multiplication and its

gcd(b,a mod b) applications” Bernstein 2008
a, b Hfve n bits — O(n?) time.

Naive pairwise GCDs:

14 % 10° .
15us x pairs
for all@mirs @ N)): 2
if g) # 1: ~ 1100 years

is Nj) to list

Efficiently computing pairwise GCDs
An efficient algorithm due to [Bernstein 2004].

Ni Ny N3 Ny

\x/ \x/ product
\ / tree

NN N3Ny
mod N?N? mod NZN? remainder

tree

a !\

mod le rnodN22 mod N32 mode
| | | |
/N1 /N2 /N3 /Na

!

ng({Nl) ng(i,Nz)ng(i,N:;) ng(' 7N4)

O(mn polylog(mn)) time for m n-bit integers, a few hours for
datasets. Implementation available at https://factorable.net.

What happens if we compute GCDs of some RSA
moduli?

What does happen when we GCD all the keys?

What happens if we compute GCDs of some RSA
moduli?

What does happen when we GCD all the keys?
Compute private keys for

+ 64,081 HTTPS servers (0.50%).
+ 2,459 SSH servers (0.03%).

+ 2 PGP users (and a few hundred invalid keys).

... only two of the factored https certificates were signed by
a CA, and both are expired. The web pages aren't active.

... only two of the factored https certificates were signed by
a CA, and both are expired. The web pages aren't active.

Subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddre;
C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddre;
CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, 0=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=0regon, L=Wilsonville, CN=141.213.19.107, 0=Xerox Corporation, OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, C

Attributing SSL and SSH vulnerabilities to
implementations

Evidence strongly suggested widespread implementation
problems.

Clue #1: Vast majority of weak keys generated by network
devices:

* Juniper network security devices

+ Cisco routers

* IBM server management cards

* Intel server management cards

* Innominate industrial-grade firewalls

|dentified devices from > 50
manufacturers

Attributing SSL and SSH vulnerabilities to
implementations

Evidence strongly suggested widespread implementation
problems.

Clue #2: Very different behavior for different devices.
Different companies, implementations, underlying software,
distributions of prime factors.

Distribution of prime factors

IBM Remote Supervisor Adapter Il and Bladecenter Management Module

>
=
3 100
o
(D]
S
E
=
S 50
>

< C [btps://68.233.219.100

AdimisName: (I
Pasmvora: [
® Remember my nanie and password

Login

Distribution of prime factors
Juniper SRX branch devices

102]

Modulus frequency

10!

Random number generation in software
®
ﬂ‘*\e
crypto keys
1

@

application pseudoran-
dom number generator
/ T N\

time
OS entropy pool
NN

pid

Random number generation in software
A

4 Hypothesis: Devices automatically

Crypt? keys generate crypto keys on first boot.

application pseudoran-

dom number generator
/ T N\

time
OS entropy pool

AN

pid

Random number generation in software
&

A4 Hypothesis: Devices automatically

Crypt? keys generate crypto keys on first boot.

application pseudoran-

dom number generator
/ T N\

time
OS entropy pool

NN

' ‘ @5 - + Headless or embedded devices
7 \ may lack these entropy sources.

pid

Random number generation in software

]
=
crypto keys

1

@

application pseudoran-
dom number generator

7 T N\

time

OS entropy pool

pid

TN

» ® <

Hypothesis: Devices automatically
generate crypto keys on first boot.

* OS random number generator
may not have incorporated any
entropy when queried by
software.

* Headless or embedded devices
may lack these entropy sources.

Linux boot-time entropy hole

Experiment: Instrument Linux kernel to track entropy
estimates.

250 T

Ubuntu Server 10.04

25,000

2wk b st 20,000

150 15,000

-------- Input pool entropy estimate - 10,000
— Input threshold to update entropy pool

- - - Bytes read from nonblocking pool

—— SSH process seeds from /dev/urandom

Input pool entropy (bits)

5,000

Bytes read from nonblocking pool

1 ! 1 1 1 1 1 ! 0
30 35 40 45 50 55 60 65 > 70

Time since boot (s)

SSH process starts entropy pool updated

Patched since July 2012.

Generating vulnerable RSA keys in software

* Insufficiently random seeds for pseudorandom number
generator — we should see repeated keys.

prog.seed()
p = prng.random_prime ()

q = prng.random_prime ()
N = pxq
* We do:

* > 60% of hosts share keys
+ At least 0.3% due to bad randomness.

* Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?

Generating factorable RSA keys in software

prng.seed()

p = prng.random_prime ()

prng.add_randomness()w\ OpenSSL adds time in seconds
q = prng.random_prime ()

N = p*xq

Insufficient randomness can lead to factorable keys.

|time:0| |time:1|

device 1 ‘ @ @ e @ @

< generating p — < generating ¢ —

device 2

Experimentally verified OpenSSL generates factorable keys
in this situation.

Experimentally generating factorable keys in
OpenSSL

Experiment: Generate keys in OpenSSL with time as only
entropy source.

Fraction of keys generated that we could factor

3

~ 0.6
T

5

2

< 0.4
g

& 16

g

£ 0.2
5 8

o

E

= . 0

1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Starting clock time 7y (seconds) ‘ .
clock tick

time as entropy source + asynchronous clocks — factorable
keys

Unexplained oddities

Here are some prime factors of SSH keys (changed to
protect the guilty):

d80000000000000. . .00000000000000000000000000000000001b3
bc0000000000000. ..00000000000000000000000000000000000c9
c60000000000000. . .00000000000000000000000000000000001af

Unexplained oddities

Here are some other prime factors of HTTPS keys we found:

c3ab64ae7fc4d4d9f75cd2ad49ec2d9f7. ..
c3ab64ae7fc4d4d9f75cd2e5f2fcb6c9. ..
c3ab64ae7fc4d4d9f75cdee869c62229. ..

€e93536e58a60b0f56bf95faedc7cad2a9c9809a0aae2. . .
€e93536e58a60b0f56bf95faedc7cad2a9c9809a2¢cfbb. . .
€e93536e58a60b0f56bf95faedc7cad2a9c9809aad4as. . .
€e93536e58a60b0f56bf95faedc7cad2a9c9809abb02d. . .
€e93536e58a60b0f56bf95faedc7cad?2a9c9809%acefbt. . .

PGP

Most likely a bad third-party plugin.

Textbook Diffie-Hellman
[Diffie Hellman 1976]

Public Parameters

G agroup (e.g. Iy, or an elliptic curve)
g group generator

Key Exchange

ga

gb

+

gab gab

Is a repeated g¢ a vulnerability?

* Yes, if unrelated parties know discrete log/private key a.
* Yes, if repeated values signal entropy issues.

Is a repeated g¢ a vulnerability?

* Yes, if unrelated parties know discrete log/private key a.
* Yes, if repeated values signal entropy issues.

ECDH TLS scans:
5.4M key exchanges 5.2M unique values.

Is a repeated g¢ a vulnerability?

* Yes, if unrelated parties know discrete log/private key a.
* Yes, if repeated values signal entropy issues.

ECDH TLS scans:
5.4M key exchanges 5.2M unique values.

Possible explanation: OpenSSL using ephemeral-static
ECDH. (Keys ephemeral per application instance and not per
handshake.)

121,000 values presented by > 1 IP address, most common
on 2,000 hosts.

Mostly shared hosting. One Netasq device always presents
same key for ECDHE.

The DSA Algorithm

DSA Public Key

p prime

q prime, divides (p — 1)

g generator of subgroup of
order g mod p

y =g“modp

Verify
uy = H(m)s~" mod g
u; =rs~" ' modgq
r g"1y¥2 mod p mod q

Private Key

X private key

Sign
Generate random k.
r =gk'mod p mod q
s =k~ (H(m) + xr) mod g

ECDSA

ECDSA Public Key

G generator € E(FFp)
Q =dG

Private Key
d private key

Sign
Generate random k.
(x,y) =kGr=xmodn
s =k=Y(H(m)+dr) mod n

What could go wrong: Repeated keys
DSA public keys

Public key

p prime

q prime, divides (p — 1)

g generator of subgroup of order g mod p
y =g“modp

+ Two hosts have same public key — both know private
key of the other.

What could go wrong: Weak DSA signature nonce

Public Key Private Key
p,q,g domain parameters X private key
y =g“modp

Signature: (r,s;)
r =gk mod p mod gq
sy =k~ "(H(m4) 4+ xr) mod q

+ DSA nonce known — easily compute private key.

What could go wrong: Weak DSA signature nonce

Public Key Private Key
p,q,g domain parameters X private key
y =g“modp
Signature: (r,s;) Signature: (r,s>)
r =gk mod p mod gq r =gk mod p mod q
sy =k~ "(H(m4) 4+ xr) mod q sy = k="(H(my) + xr) mod g

+ DSA nonce known — easily compute private key.

s1—S2 = k™ (H(m1) — H(m,)) mod q

* DSA nonce reused to sign distinct messages — easily
compute nonce.

What happens if we look for repeated DSA nonces?

Compute private keys for

+ 105,728 (1.03%) of SSH DSA servers.

+ 133 Bitcoin addresses.

Generating weak DSA signatures

Step 1: Low-entropy DSA key generation

Step 2: Low-entropy seed for PRNG generating signature

nonce.
Host 1 Host 2
50 84
58 24
9 13
36 89
84 85
24 68
13 52
89 69
85 47

Step 3: Two sequences in same state — colliding nonces.

Compromised DSA keys from Gigaset DSL routers

104 Lol R Lol
[l Keys compromised by
repeated signature randomness

) -
2 -
S 102 -
o
=

10° "

10 10! 10 10°

Private key index

Bitcoin
Several explanations so far:

* Multiple Android RNG vulnerabilities
* Test implementations.
* Developer error in uncommon bitcoin implementations.

Bitcoin address 1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj has
stolen 59 bitcoins from weak addresses so far.

fo, . e

vrard —wvinilmarahile Loy e

Disclosure for HTTPS and SSH vulnerabilities

+ Wrote disclosures to 61 companies.

* 13 had Security Incident Response Team contact
information available.

* Received responses from 28.

* 13 told us they fixed the problem

+ 5 informed us of security advisories

+ Coordinated through US-CERT, ICS CERT, JP-CERT

* Linux kernel has been patched.

Vendor responses
“When running the testing, would you be able to provide the
software on the .. and the firmware on the ... along with
model numbers on the"

“Attached is a document on the security the ... uses.” (It was
empty.)

“Would you be able to provide the login credentials for the 3
test IP Addresses you provided. | would like to login to the
device to gather the software and firmware installed.”

“Hi. What is your billing address, so that | can fwd your email
to the appropriate Account Executive.”

“some IT auditor somewhere is handed your paper, alarm
bells sound in his or her head, and things start to get
unnecessarily emergent, network admins start calling us,
CSIRTs start engaging us to figure out what's going one, etc.,
etc.”

Disclosure to end-users

+ Attempted to contact end-users with signed certificates
sharing keys with default certificates.

+ Certificates belonged to Fortune 500 companies,
insurance providers, law firms, a major public transit
authority, and the US Navy.

Factorable TLS keys over time

0.62

0.6
0.58
0.56
0.54
0.52

Percentage of Certificates using Factorable RSA Keys =

5 = ' ' 2 =

Scan Date

Mining your Ps and Qs: Widespread Weak Keys in Network Devices
Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex
Halderman Usenix Security 2012 https://factorable.net

“Ron was wrong, Whit is right” published as

Public Keys Arjen K. Lenstra, James P. Hughes, Maxime Augier,
Joppe W. Bos, Thorsten Kleinjung, and Christophe Wachter Crypto
2012

Elliptic Curve Cryptography in Practice Joppe W. Bos, J. Alex
Halderman, Nadia Heninger, Jonathan Moore, Michael Naehrig,
and Eric Wustrow Financial Cryptography 2014

Factoring RSA keys from certified smart cards: Coppersmith in the wild
Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou,
Nadia Heninger, Tanja Lange, and Nicko van Someren, Asiacrypt
2013.

